Top trends in business analytics

Data powers business

Organisations rely on it to remain successful and competitive, but they have traditionally performed analysis on huge volumes of historical data to make critical decisions. However, covid-19 has shown that models that rely on historical data have become obsolete. The data that informs business decisions needs to be captured, analysed and understood in real time to allow organisations to react to what is happening, rather than making retrospective decisions based on things that happened in the past.

As more organisations begin to adopt a new approach to business analytics as they seek actionable real time insights, it will be important to understand the new trends that are emerging in the business analytics space. These are the top trends we can expect to continue rising as we enter the final quarter of 2021:

DataOps

DataOps (data operations) is an emerging methodology helping organisations fast-track their data analytics operations. It answers the increasing demand from data professionals to extract crucial insights from raw data and has been used by the likes of Facebook and Netflix to get the leading edge over their competitors. The DataOps methodology unites data professionals with DevOps teams which are favoured for their agile working processes. This combination enhances and automates data orchestration through a collaborative and cross-functional process.

DataOps employs the continuous integration/continuous delivery (CI/CD) method. This method uses automation to accelerate lengthy processes which improves productivity and delivers results faster at every stage of a data analytics project. It is important to remove traditional silos and allow every person in the DataOps team to be able to access all of the relevant business data.

Decision Intelligence

While many organisations are relying on automation to help make sense of their data with increased speed and accuracy, many businesses are left asking “so what?” once they have access to the predictions from the data. Decision Intelligence (DI) is an emerging discipline that helps them to understand what they should do about the issues raised from the data. According to Gartner, over a third of analysts in large organisations will be practicing DI by 2023.

Data professionals typically look at predictive, prescriptive, diagnostic, descriptive and decisive data to drive DI. They also rely on Artificial Intelligence (AI) and Machine Learning (ML) to rapidly accelerate data analysis that would have previously been performed manually. By enhancing business decision making with DI, organisations can improve user experiences, differentiate from competitors and increase their revenues.

Processing data at the edge

Technologies that enable data analytics have traditionally been hosted within centralised data centre and cloud environments, meaning data that is collected by a business has had to travel from where it is generated and across a network until it reaches the physical location where the compute power required to process the data sits.

Edge computing is an emerging trend which sees computing power placed at the edge of data centre networks, allowing data to be processed closer to where it is being generated. This reduces the volume of data traveling across the network, resulting in lower costs, fewer latency issues and more real time data processing abilities.

Natural Language Processing

Natural language processing (NLP) is removing a traditional barrier in the analytics space. Data professionals and other stakeholders who aren’t proficient at working with data, but need to draw business insights from it, can struggle with different programming languages. NLP can be applied in business analytics tools to give users of all proficiencies the opportunity to ask the right questions about the data in their native language and the technology can answer them. By essentially converging the people, data and analytics tools, NLP allows stakeholders who have zero technical know-how – from the C-suite to the sales, customer service and marketing teams – to gather the insights they need from the data and get the results they require quickly and easily.

Looking ahead

2021 has already been a year of ups and downs, however, the disruption that the pandemic has wrought upon businesses has also been a catalyst for innovation. As we enter the final quarter of 2021, many organisations will begin to benefit from this innovation, particularly in the business analytics space.

Organisations that are in a position to leverage the powerful business analytics developments that are beginning to emerge will be in the best position to improve products, processes, customer experience, profitability and competitiveness through faster, more accurate data-driven insights.


About the Author

Rakesh Jayaprakash is Product Manager at ManageEngine. ManageEngine crafts the industry’s broadest suite of IT management software. We have everything you need—more than 90 products and free tools—to manage all of your IT operations, from networks and servers to applications, service desk, Active Directory, security, desktops, and mobile devices. Since 2002, IT teams like yours have turned to us for affordable, feature-rich software that’s easy to use. You can find our on-premises and cloud solutions powering the IT of over 180,000 companies around the world, including nine of every ten Fortune 100 companies.

 

Featured image: ©McLittleStock

Top trends in business analytics